On Direct Sum of Branches in Hyper BCK-algebras

Habib Harizavi
Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
E-mail: harizavi@scu.ac.ir

Abstract. In this paper, the notion of direct sum of branches in hyper $B C K$-algebras is introduced and some related properties are investigated. Applying this notion to lower hyper $B C K$-semi lattice, a necessary condition for a hyper $B C K$-ideal to be prime is given. Some properties of hyper $B C K$-chain are studied. It is proved that if H is a hyper $B C K$-chain and $[a)$ is finite for any $a \in H$, then $|\operatorname{Aut}(H)|=1$.

Keywords: Hyper $B C K$-algebra, (weak, strong) Hyper $B C K$-ideal, Direct sum of branches, Hyper BCK-chain.

2000 Mathematics subject classification: 06F35, 03G25.

1. Introduction

The study of $B C K$-algebras was initiated by Y. Imai and K. Iséki [6] in 1966 as a generalization of the concept of set-theoretic difference and propositional calcului. Since then a great deal of literature has been produced on the theory of $B C K$-algebras. The hyper structures theory(called also multi algebras) was introduced in 1934 by F. Marty at the 8th congress of Scandinavian Mathematicians [10]. In [9], Y. B. Jun et al. applied the hyper structures to $B C K$-algebras, and introduced the notion of a hyper $B C K$-algebra which is a generalization of $B C K$-algebra, and investigated some related properties. Now, we follow [9] and [7] and introduce the notion of branch of a hyper $B C K$ algebra. We consider a hyper $B C K$-algebra that is a direct sum of branches, and investigate related properties. We give a necessary condition for a hyper

[^0]$B C K$-ideal of lower hyper $B C K$-semilattice to be prime. Also, we define the hyper $B C K$-chain and obtain a condition for $[a)$ to be a hyper $B C K$-ideal. We prove that if H is a hyper $B C K$-chain and $[a)$ is finite for any $a \in H$, then $|A u t(H)|=1$. Finally, we state the relation between the branches of two isomorphic hyper $B C K$-algebras.

2. Preliminaries

We first present some elementary aspects of hyper $B C K$-algebras that are necessary for this paper, and for more details we refer to [9] and [8]. Let H be a nonempty set endowed with a hyper operation " \circ ", that is, ○ is a function from $H \times H$ to $\mathcal{P}^{*}(\mathcal{H})=\mathcal{P}(\mathcal{H}) \backslash \phi$. For two subsets A and B of H and $x, y \in H$, denote by $A \circ B, x \circ B$ and $A \circ y$ the sets $\underset{a \in A, b \in B}{ } a \circ b, \bigcup_{b \in B} x \circ b$ and $\bigcup_{a \in A} a \circ y$, respectively.

Definition 2.1. [9] A nonempty set H endowed with a hyper operation " \circ " and a constant 0 is said to be a hyper $B C K$-algebra if it satisfies the following axioms:
(H1) $(x \circ z) \circ(y \circ z) \ll x \circ y$,
(H2) $(x \circ y) \circ z=(x \circ z) \circ y$,
(H3) $x \circ H \ll\{x\}$,
(H4) $x \ll y$ and $y \ll x$ imply $x=y$,
where $x \ll y$ is defined by $0 \in x \circ y$, and for every $A, B \subseteq H, A \ll B$ is defined by $\forall a \in A, \exists b \in B$ such that $a \ll b$. In such case, we call "<" the hyper order in H.

Theorem 2.2. [9] In any hyper BCK-algebra H, we have
(a1) $0 \circ x=\{0\}$,
(a2) $x \circ 0=\{x\}$,
(a3) $x \ll x$,
(a4) $x \circ y \ll\{x\}$,
(a5) $A \ll A$,
(a6) $A \ll 0$ implies $A=\{0\}$,
(a7) $A \subseteq B$ implies $A \ll B$,
(a8) $y \ll z$ implies $x \circ z \ll x \circ y$,
(a9) $x \circ y=\{0\}$ implies $(x \circ z) \circ(y \circ z)=\{0\}$,
for any $x, y, z \in H$ and $A, B \subseteq H$.
Definition 2.3. [9] Let H be a hyper $B C K$-algebra. Then a nonempty subset S of H is called a hyper subalgebra of H if S is a hyper $B C K$-algebra with respect to the hyper operation "○" on H. If S is a nonempty subset of a hyper
$B C K$-algebra H, then S is a hyper subalgebra of H if and only if $x \circ y \subseteq S$ for all $x, y \in S$.

Theorem 2.4. [9] Let H be a hyper BCK-algebra. Then the set $S(H):=\{x \in$ $H \mid x \circ x=\{0\}\}$ is a hyper subalgebra of H, which is called BCK-part of H. Moreover, H is a BCK-algebra if and only if $S(H)=H$.

Definition 2.5. [9, 8] Let H be a hyper $B C K$-algebra. Then, a nonempty subset I of H with $0 \in I$ is called a weak hyper $B C K$-ideal of H if it satisfies: $(\forall x, y \in H)(x \circ y \subseteq I$ and $y \in I \Longrightarrow x \in I)$; hyper $B C K$-ideal of H if it satisfies: $(\forall x, y \in H)(x \circ y \ll I$ and $y \in I \Longrightarrow x \in I)$; reflexive hyper $B C K$-ideal of H if it is a hyper $B C K$-ideal of H and satisfies: $(\forall x \in H) x \circ x=\{0\}$; strong hyper $B C K$-ideal of H if it satisfies: $(\forall x, y \in H)(x \circ y) \cap I \neq \phi$ and $y \in I \Longrightarrow x \in I)$.

Theorem 2.6. [9, 8] (i) Every strong hyper BCK-ideal of a hyper BCKalgebra is a hyper BCK-ideal.
(ii) Every hyper BCK-ideal of a hyper BCK-algebra is a weak hyper BCKideal.

Theorem 2.7. [8] Let A be a subset of a hyper BCK-algebra H. If I is a hyper $B C K$-ideal of H such that $A \ll I$, then $A \subseteq I$.

Definition 2.8. [1] Let H be a hyper $B C K$-algebra, ρ be an equivalence relation on H and $A, B \subseteq H$. Then
(i) we write $A \rho B$, if there exist $a \in A$ and $b \in B$ such that $a \rho b$,
(ii) we write $A \bar{\rho} B$, if for all $a \in A$ there exists $b \in B$ such that $a \rho b$ and for all $b \in B$ there exists $a \in A$ such that $a \rho b$,
(iii) ρ is called a congruence relation on H, if $x \rho y$ and $x^{\prime} \rho y^{\prime}$, then $x \circ x^{\prime} \bar{\rho} y \circ y^{\prime}$, for all $x, y, x^{\prime}, y^{\prime} \in H$,
(iv) ρ is called regular on H, if $x \circ y \rho\{0\}$ and $y \circ x \rho\{0\}$, then $x \rho y$, for all $x, y \in H$.

Theorem 2.9. [1] Let ρ be a regular congruence relation on H and $\frac{H}{\rho}=\left\{[x]_{\rho} \mid\right.$ $x \in H\}$. Then $\frac{H}{\rho}$ with hyperoperation " 0 " and hyperorder " $<$ " which is defined as follows:

$$
[x]_{\rho} \circ[y]_{\rho}=\left\{[z]_{\rho} \mid \text { for some } z \in x \circ y\right\}, \quad[x]_{\rho} \ll[y]_{\rho} \Longleftrightarrow[0]_{\rho} \in[x]_{\rho} \circ[y]_{\rho}
$$

is a hyper BCK-algebra which is called quotient hyper BCK-algebra.

3. Direct Sum of Branches

Definition 3.1. [7] An element a of a hyper $B C K$-algebra H is called a hyperatom if it satisfies

$$
(\forall x \in H)(x \ll a \Longrightarrow x=0 \text { or } x=a .)
$$

Denote by $A(H)$ the set of all hyperatoms of H. Obviously, $0 \in A(H)$.

Lemma 3.2. Let H be a hyper BCK-algebra. Then the set $A(H)$ is a hyper subalgebra of H.

Proof. Let $a, b \in A(H)$. Then by Theorem 2.2($\left.a_{4}\right)$, we have $a \circ b \ll\{a\}$. This implies that $t \ll a$, for any $t \in a \circ b$. Since a is a hyperatom, we get $t=0$ or $t=a$. Hence $a \circ b \subseteq\{0, a\}$ and so $a \circ b \subseteq A(H)$. Therefore, $A(H)$ is a hyper subalgebra of H.

Definition 3.3. Let H be a hyper $B C K$-algebra. For any hyperatom $a \in$ $A^{*}(H)=A(H)-\{0\}$, the set

$$
B(a):=\{x \in H \mid a \ll x\} \cup\{0\}
$$

is called the branch of H generated by a.
Definition 3.4. A hyper $B C K$-algebra (H, \ll) is called ordered if the hyperorder " \ll "is transitive.

For any element a of a hyper $B C K$-algebra H, we denote

$$
[a):=\{x \in H \mid x \ll a\} .
$$

Lemma 3.5. Let H be an ordered hyper BCK-algebra. If the set $[a)$ is finite for any $a \in H$, then

$$
H=\bigcup_{a \in A^{*}(H)} B(a) .
$$

Proof. It suffices to show that for any $0 \neq x \in H$, there exists $a \in A^{*}(H)$ such that $x \in B(a)$. Let $0 \neq x \in H$. If x is a hyperatom, then, since $x \in B(x)$, the result holds. Otherwise, there is $x_{1} \in H$ such that $x_{1} \ll x$ and $x_{1} \neq x$. If $x_{1} \in A^{*}(H)$, then $x \in B\left(x_{1}\right)$, and so the proof is complete. Otherwise, there exists $x_{2} \in H$ such that $x_{2} \ll x_{1}$ and $x_{2} \neq x_{1}$. By transitivity of \ll, we get $x_{2} \ll x_{1} \ll x$. Since $[x)$ is finite, this process will be stopped in a hyperatom element, e.i., there exists $x_{n} \in A^{*}(H)$ such that $x_{n} \ll x_{n-1} \ll \ldots \ll x_{1} \ll x$. Thus $x \in B\left(x_{n}\right)$. This completes the proof.

Definition 3.6. An ordered hyper $B C K$-algebra H is called a direct sum of branches and denoted by $H=\bigoplus_{a \in A^{*}(H)} B(a)$ if it satisfies the following:
(i) $H=\bigcup_{a \in A^{*}(H)} B(a)$,
(ii) $B(a) \cap B(b)=\{0\}$, for any $a, b \in A^{*}(H)$ with $a \neq b$.

Example 3.7. (i) Let $H=\{0, a, b, c\}$. Consider the following table:

\circ	0	a	b	c
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0, a\}$	$\{0\}$	$\{a\}$
b	$\{b\}$	$\{b\}$	$\{0, a, b\}$	$\{b\}$
c	$\{c\}$	$\{c\}$	$\{c\}$	$\{0, c\}$

Then $(H ; \circ, 0)$ is an ordered hyper $B C K$-algebra. It is routine to check that $A^{*}(H)=\{a, c\}, B(a)=\{0, a, b\}$ and $B(c)=\{0, c\}$. Therefore $H=B(a) \oplus B(c)$ and so H is a direct sum of branches.
(ii) Let $K=\{0,1,2,3\}$, with hyper operation " \circ " given by the following table:

\circ	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{1\}$	$\{0\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	$\{0\}$
3	$\{3\}$	$\{2\}$	$\{1\}$	$\{0\}$

Then $(K ; \circ, 0)$ is an ordered hyper $B C K$-algebra but it is not a direct sum of branches since $B(1) \cap B(2) \neq\{0\}$.

Lemma 3.8. Let $H=\bigoplus_{a \in A^{*}(H)} B(a)$. Then the following statements hold for any $x, y \in H, T \subseteq H$ and $a \in A^{*}(H)$.
(i) $\{x\} \ll B(a)$ implies $x \in B(a)$,
(ii) $T \ll B(a)$ implies $T \subseteq B(a)$,
(iii) $(x \circ y) \cap B(a) \neq \phi,\{0\}$ implies $x \circ y \subseteq B(a)$.

Proof. (i) Let $x \in H$ be such that $\{x\} \ll B(a)$ for some $a \in A^{*}(H)$. If $x=0$, then clearly $x \in B(a)$. Assume that $x \neq 0$. Thus there exists $z \in B(a)$ such that $x \ll z$. Since $H=\bigoplus_{a \in A^{*}(H)} B(a)$, there exists $b \in A^{*}(H)$ such that $x \in B(b)$. Hence $b \ll x$ and so $b \ll z$. Then $z \in B(a) \cap B(b)$. It follows from $x \ll z$ and $x \neq 0$ that $z \neq 0$. Hence $B(a) \cap B(b) \neq\{0\}$ and so by Definition $3.6, a=b$. Therefore $x \in B(a)$.
(ii) It is a consequence from (i).
(iii) Let $x, y \in H$ and let $a \in A^{*}(H)$ be such that $(x \circ y) \cap B(a) \neq \phi,\{0\}$. Then there exists $0 \neq t \in x \circ y$ such that $t \in B(a)$. Hence $a \ll t$ and so from $x \circ y \ll x$, we get $a \ll x$. This implies that $x \in B(a)$ and so $x \circ y \ll B(a)$. Then by (ii), we get $x \circ y \subseteq B(a)$, which completes the proof.

Proposition 3.9. Let $H=\bigoplus_{a \in A^{*}(H)} B(a)$. Then for any $a \in A^{*}(H)$, we have
(i) $B(a)$ is a hyper subalgebra of H,
(ii) $B(a)$ is a weak hyper $B C K$-ideal of H,
(iii) $B(a)$ is a strong hyper $B C K$-ideal of H.

Proof. (i) Let $a \in A^{*}(H)$ and $x, y \in B(a)$. Since $x \circ y \ll\{x\} \in B(a)$, it follows that $x \circ y \ll B(a)$. Hence by Lemma 3.8(ii), we get $x \circ y \subseteq B(a)$. Therefore $B(a)$ is a hyper subalgebra of H.
(ii) Let $x, y \in H$ be such that $x \circ y \subseteq B(a)$ and $y \in B(a)$, for some $a \in A^{*}(H)$. We will show that $x \in B(a)$. If $x \circ y=\{0\}$, then $x \ll y$ and so $x \ll B(a)$. Hence by Lemma 3.8 (i), $x \in B(a)$. If $x \circ y \neq\{0\}$, then there exists $(0 \neq) t \in x \circ y$
and so $a \ll t$. Since $t \ll x$, we get $x \in B(a)$. Therefore $B(a)$ is a weak hyper $B C K$-ideal of H.
(iii) Let $x, y \in H$ be such that $y \in B(a)$ and $(x \circ y) \cap B(a) \neq \phi$ for some $a \in A^{*}(H)$. If $(x \circ y) \cap B(a)=\{0\}$, then $0 \in x \circ y$ and so $x \ll y$, which implies that $x \in B(a)$. If $(x \circ y) \cap B(a) \neq\{0\}$, then by Lemma 3.8 (iii), $x \circ y \subseteq B(a)$. By (ii), $B(a)$ is a weak hyper $B C K$-ideal. Hence from $x \circ y \subseteq B(a)$ and $y \in B(a)$, we get $x \in B(a)$. Therefore $B(a)$ is a strong hyper $B C K$-ideal.

Theorem 3.10. Let $H=\bigoplus_{a \in A^{*}(H)} B(a)$. Then for any nonempty subset Q of $A^{*}(H), \bigoplus_{a \in Q} B(a)$ is a strong hyper $B C K$-ideal of H.

Proof. The proof is similar to the proof of Proposition 3.9(iii) by some modification.

Since every strong hyper $B C K$-ideal is a (weak) hyper $B C K$-ideal, we have the following corollary.

Corollary 3.11. Let $H=\underset{a \in A^{*}(H)}{\bigoplus} B(a)$. Then for any nonempty subset Q of $A^{*}(H), \bigoplus_{a \in Q} B(a)$ is a (week) hyper BCK-ideal of H.

The following proposition shows that the union of two direct sum of branches is a direct sum of branches too.

Proposition 3.12. Let $H=\bigoplus_{a \in A^{*}(H)} B(a)$ and $K=\bigoplus_{b \in A^{*}(K)} B(b)$. If $H \cap K=$ (0), then $H \oplus K$ is a direct sum of branches, where $H \oplus K=H \cup K$ and its hyperoperation "○" is defined as follows:

$$
x \circ y:=\left\{\begin{array}{lc}
x \circ_{H} y & \text { if } x, y \in H \tag{3.1}\\
x \circ_{K} y & \text { if } x, y \in K \\
\{x\} & \text { otherwise }
\end{array}\right.
$$

for all $x, y \in H \cup K$.
Proof. From [9], it is known that $H \oplus K$ is a hyper $B C K$-algebra. By (3.1), $x<_{H \oplus K} y$ if and only if $x, y \in H$ or $x, y \in K$. This implies that $H \oplus K$ is ordered. Let $a \in A^{*}(H)$ and let $(0 \neq) x \in H \oplus K$ be such that $x \ll a$. Then $0 \in x \circ a$ and so from $x \neq 0$ we conclude $x \circ a \neq\{x\}$. Hence, it follows from (3.1) and $a \in H$ that $x \circ a=x \circ_{H} a$. Then $x \ll_{H} a$. Since a is a hyperatom of H, we get $x=a$. Hence a is a hyperatom of $H \oplus K$ and so $A^{*}(H) \subseteq A^{*}(H \oplus K)$. Similarly, we can show that $A^{*}(K) \subseteq A^{*}(H \oplus K)$. Thus $A^{*}(H) \cup A^{*}(K) \subseteq A^{*}(H \oplus K)$. Obviously, since $H, K \subseteq H \oplus K$, we get $A^{*}(H \oplus K) \subseteq A^{*}(H) \cup A^{*}(K)$. Hence $A^{*}(H \oplus K)=A^{*}(H) \cup A^{*}(K)$. It is clear that $H \cup K=\left(\underset{a \in A^{*}(H)}{\bigoplus} B(a)\right) \cup\left(\underset{b \in A^{*}(K)}{\bigoplus} B(b)\right)$. Since $B(a) \cap B(b)=(0)$ for
any $a \in A^{*}(H)$ and $b \in A^{*}(K)$, we obtain $H \oplus K=\bigoplus_{c \in A^{*}(H) \cup A^{*}(K)} B(c)$ and so $H \oplus K=\underset{c \in A^{*}(H \oplus K)}{\bigoplus} B(c)$. Therefore $H \oplus K$ is a direct sum of branches.

We recall that an ordered hyper $B C K$-algebra is said to be a lower hyper $B C K$-semilattice if $x \wedge y$, the greatest lower bound of x and y, exists for any $x, y \in H$. Also, a proper hyper $B C K$-ideal P of a lower hyper $B C K$-semilattice is said to be prime if $x \wedge y \in P$ implies $x \in P$ or $y \in P$ for any $x, y \in H$ (see [5]).

Proposition 3.13. Let $H=\bigoplus_{a \in A^{*}(H)} B(a)$ be a lower hyper $B C K$-semilattice and $|P| \geq 2$. Then for any $b \in A^{*}(H), Q_{b}:=\underset{b \neq a \in A^{*}(H)}{ } B(a)$ is a prime hyper $B C K$-ideal of H.

Proof. Let $b \in A^{*}(H)$. By Corollary 3.11, Q_{b} is a hyper $B C K$-ideal of H. Let $x, y \in H$ be such that $x \notin Q_{b}$ and $y \notin Q_{b}$. Hence, we get $x, y \in B(b), x \neq 0$ and $y \neq 0$. Thus $b \ll x, y$ and so $b \ll x \wedge y$. It follows that $x \wedge y \in B(b)$. Moreover, $x \wedge y \neq 0$ because $b \neq 0$. Hence $x \wedge y \notin Q_{b}$. Therefore Q_{b} is prime.

The following theorem gives a necessary condition for a hyper $B C K$-ideal to be prime.

Theorem 3.14. Let $H=\underset{a \in A^{*}(H)}{ } B(a)$ be a lower hyper $B C K$-semilattice. If I is a prime hyper $B C K$-ideal of H, then $H-I \subseteq B(a)$ for some $a \in A^{*}(H)$.

Proof. Let I be a prime hyper $B C K$-ideal of H. If $\left|A^{*}(H)\right|=1$, then $B(a)=$ H for $a \in A^{*}(H)$ and so clearly $H-I \subseteq B(a)$. Assume that $\left|A^{*}(H)\right| \geq 2$. Suppose on the contrary, $H-I \nsubseteq B(a)$ for any $a \in A^{*}(H)$. Then, since $H-I \subseteq \bigcup_{a \in A^{*}(H)} B(a)$ and $\left|A^{*}(H)\right| \geq 2$, there exist $b, c \in A^{*}(H)$ with $b \neq c$ such that $(H-I) \cap B(b) \neq \phi$ and $(H-I) \cap B(c) \neq \phi$. Hence there are $x \in(H-I) \cap B(b)$ and $y \in(H-I) \cap B(c)$. This imply $x \in B(b), y \in B(c)$ and $x, y \notin I$. By Corollary 3.11, $B(b)$ is a hyper $B C K$-ideal of H. Then it follows from $x \wedge y \ll x \in B(b)$ and Lemma 3.8(i) that $x \wedge y \in B(b)$. Similarly, we have $x \wedge y \in B(c)$. Hence $x \wedge y \in B(b) \cap B(c)$ and so $x \wedge y=0$. On the other hand, since $x, y \notin I$ and I is prime, we have $x \wedge y \notin I$. Hence $0 \notin I$, which a contradiction. Therefore $H-I \subseteq B(a)$ for some $a \in A^{*}(H)$.

Proposition 3.15. Let $H=\bigoplus_{a \in A^{*}(H)} B(a)$. If the branch $B(a)$ is bounded such that $S(H) \cap B(a)=\left\{0, c_{a}\right\}$ where c_{a} is an upper bound of $B(a)$, for some $a \in A^{*}(H)$, then $I:=H-\left\{c_{a}\right\}$ is a hyper BCK-ideal of H.

Proof. Obviously, $0 \in I$. It suffices to show that the inequality $c_{a} \circ x \ll I$ does not hold for any $x \in I$. Suppose on the contrary that $c_{a} \circ x \ll I$ for some $x \in I$.

Then for any $t \in c_{a} \circ x$ there exists $i_{t} \in I$ such that $t \ll i_{t}$. Since $c_{a} \in S(H)$, we get $c_{a} \circ c_{a}=\{0\}$. Applying the axiom (H1), we have

$$
t \circ t \subseteq\left(c_{a} \circ x\right) \circ\left(c_{a} \circ x\right) \ll c_{a} \circ c_{a}=\{0\}
$$

This implies that $t \circ t=\{0\}$. Hence $t \in S(H)$. By Lemma 3.8(i), since $t \ll c_{a} \in B(a)$, we have $t \in B(a)$. Therefore $t \in S(H) \cap B(a)$ and so $t=0$ or $t=c_{a}$. If $t=0$, then $c_{a} \ll x$, which implies that $x \in B(a)$. Thus, since c_{a} is an upper bound of $B(a)$, we have $c_{a}=x$, which a contradiction. If $t=c_{a}$, then $c_{a} \ll i_{t}$. This implies that $i_{t} \in B(a)$ and so $\left.c\right) a=i_{t}$. Hence $c_{a} \in I$, which a contradiction. Therefore the assumption is false and so I is a hyper $B C K$-ideal.

Theorem 3.16. Let $H=\underset{a \in A^{*}(H)}{ } B(a)$, and let all branches of H be bounded. Assume that $S(H)=U \cup\{0\}$, where U is the set of upper bounds of branches. Then M is a maximal hyper $B C K$-ideal of H if and only if $M=H-\left\{c_{a}\right\}$, for some $c_{a} \in U$.

Proof. Let M be a maximal hyper $B C K$-ideal of H. Then M is prime and so by Theorem 3.14, there exists $a \in A^{*}(H)$ such that $H-M \subseteq B(a)$. Hence there exists $T \subseteq B(a)$ such that $M=\underset{a \neq b \in A^{*}(H)}{ } B(b) \cup T$. We note that if $\left|A^{*}\right|=1$, then we have $M=T$. Assume that $c_{a} \in B(a)$ is an upper bound of $B(a)$. If $c_{a} \in T$, then $B(a) \subseteq T$ and so $M=H$, which a contradiction. Hence $c_{a} \notin T$. This implies that $M \subseteq H-\left\{c_{a}\right\}$. By Proposition 3.15, $H-\left\{c_{a}\right\}$ is a hyper $B C K$-ideal. Then by maximality of M, we get $M=H-\left\{c_{a}\right\}$. Conversely, by Theorem 3.15, the result holds.

Definition 3.17. A hyper $B C K$-algebra H is said to be hyperatomic if each its element is hyperatom, i.e., $A(H)=H$.

Proposition 3.18. Let $H=\bigoplus_{a \in A^{*}(H)} B(a)$. Then there exists a regular congruence ρ on H such that the quotient hyper BCK-algebra $\frac{H}{\rho}$ is hyperatomic.
Proof. Let $H=\underset{a \in A^{*}(H)}{ } B(a)$. Define the relation ρ on H as follows:

$$
x \rho y \Leftrightarrow x=y=0 \text { or } a \ll x, y, \text { for some } a \in A^{*}(H) \text {. }
$$

Putting $B^{*}(a)=B(a)-\{0\}$, it is easy to see that the sets $\{0\}$ and $B^{*}(a)$ for any $a \in A^{*}(H)$ form a partition of H. This implies that ρ is an equivalence relation on H. It is clear that $[0]_{\rho}=\{0\}$ and $[a]_{\rho}=B^{*}(a)$. Let $x, y \in H$ be such that $x \rho y$. Then $x=y=0$ or $x, y \in B^{*}(a)$, for some $a \in A^{*}(H)$. Hence for any $z \in H, x \circ z=y \circ z$ or $x \circ z, y \circ z \subseteq B^{*}(a)$. This implies $x \circ z \bar{\rho} y \circ z$. Similarly, we can show that if $x \rho y$, then $z \circ x \bar{\rho} z \circ y$, for any $z \in H$. Thus ρ is congruence. To proof the regularity of ρ assume that $x \circ y \rho 0$ and $y \circ x \rho 0$ for some $x, y \in H$. Then there are $t \in x \circ y$ and $s \in y \circ x$ such that $t \rho 0$ and $s \rho 0$.

Then, from $[0]_{\rho}=\{0\}$, we get $t=s=0$, and so $x \ll y$ and $y \ll x$. Hence $x=y$ and consequently, $x \rho y$. Thus ρ is regular and so by Theorem $2.9, \frac{H}{\rho}$ is a hyper $B C K$-algebra. Let $[a]_{\rho} \in \frac{H}{\rho}$. If $[x]_{\rho} \ll[a]_{\rho}$, for some $[x]_{\rho} \in \frac{H}{\rho}$, then $[0]_{\rho} \in[x]_{\rho} \circ[a]_{\rho}$ and so $[0]_{\rho}=[t]_{\rho}$ for some $t \in x \circ a$. Hence $t=0$ and so $x \ll a$. Since a is a hyperatom, we get $x=0$ or $x=a$, which implies $[x]_{\rho}=[0]_{\rho}$ or $[x]_{\rho}=[a]_{\theta}$. Therefore $\frac{H}{\rho}$ is hyperatomic.

Now, we recall the definition of hypercondition and consider $H=\underset{a \in A^{*}(H)}{ } B(a)$ satisfying the hypercondition.

Definition 3.19. [9] A hyper $B C K$-algebra H is said to satisfy the hypercondition if, for every $a, b \in H$, the set $\nabla(a, b):=\{x \in H \mid 0 \in(x \circ a) \circ b\}$ has the greatest hyperelement. This greatest hyperelement is denoted by $a \ominus b$. Obviously, $0, a, b \in \nabla(a, b)$.

Lemma 3.20. If $H=\underset{a \in A^{*}(H)}{ } B(a)$ satisfies the hypercondition, then $H=$ $B(a)$, for some $a \in A^{*}(H)$.

Proof. Let t be a non-zero element of H. Then there exists $a \in A^{*}(H)$ such that $t \in B(a)$. By the hypothesis, $t \ominus x$ exists, for all $x \in H$. Since $t \ll t \ominus x$, we get $t \ominus x \in B(a)$. By Lemma 3.8(i), it follows from $x \ll t \ominus x$ that $x \in B(a)$, for any $x \in H$. This implies that $H=B(a)$.

4. Hyper BCK-Chain

Definition 4.1. An ordered hyper $B C K$-algebra H is said to be a hyper $B C K$-chain if $x \ll y$ or $y \ll x$, for any $x, y \in H$.

Example 4.2. (i) Let $N=\{0,1,2, \ldots\}$ and define a hyperoperation " \circ " on N as follows:

$$
x \circ y:= \begin{cases}\{0, x\} & \text { if } x \leq y \\ \{x\} & \text { otherwise }\end{cases}
$$

for all $x, y \in H$. Then $(N ; \circ, 0)$ is a hyper $B C K$-chain. In fact $0 \ll 1 \ll 2 \ll \ldots$; Then H is not a hyper $B C K$-chain since neither $2 \ll 3$ nor $3 \ll 2$.
(ii) Consider a hyper $B C K$-algebra $H=\{0,1,2,3\}$ with the following Cayley table:

\circ	0	1	2	3
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
1	$\{1\}$	$\{0,1\}$	$\{0\}$	$\{0,1\}$
2	$\{2\}$	$\{2\}$	$\{0\}$	$\{2\}$
3	$\{3\}$	$\{3\}$	$\{3\}$	$\{0\}$

Then H is not a hyper $B C K$-chain since neither $2 \ll 3$ nor $3 \ll 2$.
(iii) Let $(H ; \circ, 0)$ be a hyper $B C K$-chain, and let $\alpha \notin H$. Then the Iseki's hyper $B C K$-algebra $K:=\left(H \cup\{\alpha\} ; \circ^{\prime}, 0\right)$ which \circ^{\prime} is defined by

$$
\alpha \circ^{\prime} \alpha=\{0\}, x \circ^{\prime} \alpha=\{0\}, \alpha \circ^{\prime} x=\{\alpha\}, \text { and } x \circ^{\prime} y=x \circ y, \text { for any } x, y \in H,
$$

is a hyper $B C K$-chain.
Definition 4.3. [4] Let H be a hyper $B C K$-algebra. We say that H satisfies the condition right-multiple (for short, condition r-m) if the following implication holds:

$$
(\forall x, y, z \in H)(x \ll y \Longrightarrow x \circ z \ll y \circ z)
$$

The following theorem gives a condition for the set $[a)$ to be a hyper $B C K$ ideal.

Theorem 4.4. Let H be a hyper BCK-chain satisfying the condition r-m. If $[a) \cup S(H)=H$ and $[a) \cap S(H)=\{0\}$, then $[a)$ is a hyper BCK-ideal of H.

Proof. Obviously, $0 \in[a)$. It suffices to show that the inequality $x \circ b \ll[a)$ does not hold for any $0 \neq x \in S(H)$ and $b \in[a)$. Suppose on the contrary that the inequality holds for some $0 \neq x \in S(H)$ and $b \in[a)$. Then for any $t \in x \circ b$ there exists $d_{t} \in[a)$ such that $t \ll d_{t}$. Since $x \in S(H)$, we get $x \circ x=\{0\}$. Then, using axiom $H 1$, we obtain $t \circ t=\{0\}$. Hence $t \in S(H)$. On the other hand, it follows from $t \ll d_{t} \in[a)$ that $t \in[a)$. Thus $t \in[a) \cap S(H)=\{0\}$, and so $t=0$. Hence $0 \in x \circ b$. This implies that $x \ll b$. Since $b \ll a$, we get $x \in[a)$ and so $(0 \neq) x \in[a) \cap S(H)$, which a contradiction. Therefore $[a)$ is a hyper $B C K$-ideal of H.

The following example shows that the condition $[a) \cap S(H)=\{0\}$ in Theorem 4.4 is necessary.

Example 4.5. Consider a hyper $B C K$-chain $H=\{0, a, b, c\}$ with the following Cayley table:

\circ	0	a	b	c
0	$\{0\}$	$\{0\}$	$\{0\}$	$\{0\}$
a	$\{a\}$	$\{0\}$	$\{0\}$	$\{0\}$
b	$\{b\}$	$\{a\}$	$\{0, a\}$	$\{0, a\}$
c	$\{c\}$	$\{a\}$	$\{a\}$	$\{0, a\}$

Then $[a)=\{0, a\}=S(H)$. Obviously, $b \circ a=\{a\} \ll[a)$ and $b \notin[a)$. It follows that $[a)$ is not a hyper $B C K$-ideal of H.

Definition 4.6. [4] Let H be a hyper $B C K$-algebra. We say that H satisfies the condition \ll-scalar if the following implication holds:

$$
(\forall x, y \in H)(x \ll y \Longrightarrow x \circ y=\{0\})
$$

Lemma 4.7. If a hyper BCK-algebra satisfies the condition \ll-scalar, then it satisfies the condition r - m.
Proof. Let $x, y \in H$ be such that $x \ll y$. Then by hypothesis, we have $x \circ y=$ $\{0\}$ and so by Theorem $2.2\left(a_{9}\right)$, we have $(x \circ z) \circ(y \circ z)=\{0\}$. This implies that $x \circ z \ll y \circ z$. Therefore H satisfies the condition r-m.

Proposition 4.8. Every hyper BCK-algebra satisfying condition \ll-scalar is a ordered hyper BCK-algebra.

Proof. Let H be a hyper $B C K$-algebra satisfying the condition \ll-scalar, and let $x, y, z \in H$ be such that $x \ll y$ and $y \ll z$. Then by hypothesis, we get $x \circ y=\{0\}$ and $y \circ z=\{0\}$. By Theorem 2.3(a_{9}), it follows from $x \circ y=\{0\}$ that $(x \circ z) \circ(y \circ z)=\{0\}$. Hence $x \circ z=\{0\}$, that is, $x \ll z$. Therefore H is a ordered hyper $B C K$-algebra.

Applying Lemma 4.7 and Theorem 4.4, we have the following corollary.
Corollary 4.9. Let H be a hyper BCK-chain satisfying the condition $\ll-$ scalar. If $[a) \cup S(H)=H$ and $[a) \cap S(H)=\{0\}$, then $[a)$ is a hyper BCK-ideal of H.

Theorem 4.10. Let H be a hyper BCK-chain. If the set $[a)$ is finite for any $a \in H$, then $|\operatorname{Aut}(H)|=1$.
Proof. Assume that $f: H \rightarrow H$ is an isomorphism. It suffices to show that $f(x)=x$ for any $x \in H$. Suppose on the contrary that there exists $a \in H$ such that $f(a) \neq a$. Since $f(0)=0$ and $[a)$ is finite, then we may suppose that $|[a)|=n$, where n is the least number with property $f(a) \neq a$ and $f(x)=x$ for any $(a \neq) x \in[a)$. Hence, we can assume that $[a)=\left\{x_{i} \in H \mid 0=x_{1} \ll\right.$ $\left.x_{2} \ll \ldots \ll x_{n-1} \ll x_{n}=a\right\}$. Therefore $f\left(x_{i}\right)=x_{i}$ for any $i=1,2, \ldots, n-1$. Since f is injective, we have $f(a) \neq x_{i}$ for any $i=1,2, \ldots, n$ and so $f(a) \notin[a)$. Assume that $f(a)=c$. Then from $c \notin[a)$ and the fact that H is a chain, we get $a \ll c$ and $a \neq c$. Since f is surjective, there exists $d \in H$ such that $a=f(d)$. Clearly, $d \neq a$. If $d \ll a$, then $d \in[a)$ and so $d=x_{i}$ for some $i=1,2, \ldots, n-1$. Hence $f(d)=d$ and so from $a=f(d)$ we get $a=d$. This implies $f(a)=f(d)=d=a$, that is, $f(a)=a$, which a contradiction. Thus $a \ll d$. If follows from f is isotone that $f(a) \ll f(d)$. Hence $c \ll a$, which a contradiction. Then $f(x)=x$ for any $x \in H$, that is, $f=i d_{H}$. Therefore $|\operatorname{Aut}(H)|=1$.

The following example shows that the finiteness assumption for $[a)$ in Theorem 4.10 is necessary.
Example 4.11. Let $H=\{0,1,2, \ldots\} \cup\left\{\frac{1}{n}: n=2,3, \ldots\right\}$. Define a hyperoperation " \circ " on H as follows:

$$
x \circ y:= \begin{cases}\{0, x\} & \text { if } x \leq y, \\ \{x\} & \text { otherwise }\end{cases}
$$

for all $x, y \in H$. It is routine to check that H is a hyper $B C K$-chain. Clearly, $[a)$ is infinite for any $(0 \neq) a \in H$. Define a function $f: H \rightarrow H$ by $f(n)=n-1$ for $n=2,3, \ldots ; f\left(\frac{1}{n}\right)=\frac{1}{n+1}$ for $n=1,2, \ldots ;$ and $f(0)=0$. It can be verified that f is an isomorphism that is not the identity map. Therefore $|\operatorname{Aut}(H)|>1$.

The following proposition shows that the image of a branch of an isomorphism is a branch too.

Theorem 4.12. Let $H=\bigoplus_{a \in A^{*}(H)} B(a)$ and $K=\bigoplus_{b \in A^{*}(K)} B(b)$. If all branches of H and K are chain, then the following statements hold:
(i) If $f: H \rightarrow K$ is a homomorphism, then $f(B(a)) \cap B(b) \neq(0)$ implies $f(B(a)) \subseteq B(b)$, for any $a \in A^{*}(H)$ and $b \in A^{*}(K)$;
(ii) If $f: H \rightarrow K$ is an isomorphism, then for any $a \in A^{*}(H)$, there exists $b \in A^{*}(K)$ such that $f(a)=b$ and $f(B(a))=B(b)$ and consequently, $|B(a)|=|B(b)|$.

Proof. (i) Assume that $f(B(a)) \cap B(b) \neq(0)$ for some $a \in A^{*}(H)$ and $b \in$ $A^{*}(K)$. Then there exist $x \in B(a)$ and $y \in B(b)$ such that $y=f(x) \neq 0$. For any $t \in B(a)$, we have $t \ll x$ or $x \ll t$. Since f is isotone, we get $f(t) \ll f(x)$ or $f(x) \ll f(t)$. Hence $f(t) \ll y$ or $y \ll f(t)$. If $f(t) \ll y$, then by Lemma 3.8(i), we have $f(t) \in B(b)$. If $y \ll f(t)$, then it follows from $b \ll y$ that $b \ll f(t)$ and so $f(t) \in B(b)$. Therefore $f(B(a)) \subseteq B(b)$.
(ii) Let $a \in A^{*}(H)$. Clearly, $f(a) \in B(b)$ for some $b \in Q$. Since $a \neq 0$, we get $f(a) \neq 0$. Hence $b \ll f(a)$. Since f is epimorphism, $b=f(t)$ for some $t \in H$. Thus $f(t) \ll f(a)$ and so $t \ll a$ because f^{-1} is isotone. Since a is a hyperatom, we get $t=a$. Hence $f(a)=b$. To proof the second part (ii), we note that $0 \neq f(a) \in f(B(a)) \cap B(b)$. Using (i), we get $f(B(a)) \subseteq B(b)$. Let $0 \neq y \in B(b)$. Then $b \ll y$. But $b=f(a)$. Hence $f(a) \ll y$ and so $a \ll f^{-1}(y)$. This implies $f^{-1}(y) \in B(a)$. Hence $y=f\left(f^{-1}(y)\right) \in f(B(a))$, and consequently $B(b) \subseteq f(B(a))$. Therefore $B(b)=f(B(a))$. It is clear that $|B(a)|=|f(B(a))|$. Therefore $|B(a)|=|B(b)|$.

Acknowledgments

The author is highly grateful to referees for their valuable comments and suggestions for improving the paper.

References

1. R. A. Borzooei, H. Harizavi, Regular congruence relations on Hyper BCK-algebras, Scientiae Mathematicae Japonicae, 61(1), (2005), 83-97.
2. R. A. Borzooei, A. Rezazadeh, A. Ameri, On Hyper Pseudo BCK-algebras, Iranian Journal of Mathematical Sciences and Informatics, 9(1), (2014), 13-29.
3. R. A. Borzooei, O. Zahiri, Radical and Its Applications in BCH-Algebras, Iranian Journal of Mathematical Sciences and Informatics, 8(1), (2013), 15-29.
4. H. Harizavi, On Hyper BCK-algebras with condition r-m, International journal of algebra, 4(9), (2010), 403-412.
5. H. Harizavi, R. A. Borzooei, Lattice structure on generated weak hyper BCK-ideals of a hyper BCK-algebra, Italian Journal of Pure and Applied Mathematics, 26, (2009), 227-238.
6. Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42, (1966), 19-22.
7. Y. B. Jun, X. L. Xin, Scalar elements and hyperatoms of hyper BCK-algebra, Scientiae Mathematicae Japonicae, 2(3), (1999), 303-309.
8. Y. B. Jun, X. L. Xin, E. H. Roh, M. M. Zahedi, Strong hyper BCK-ideals of hyper BCK-algebra, Mathematicae Japonicae, 51(3), (2000), 493-498.
9. Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei, On hyper BCK-algebra, Italian Journal of Pure and Applied Mathematics, Oxford Ser, 10, (2000), 127-136.
10. F. Marty, Sur une generalization de la notion de groups, 8th congress Math. Scandinaves, Stockhholm, (1934), 43-49.

[^0]: Received 13 June 2013; Accepted 01 January 2016
 © 2016 Academic Center for Education, Culture and Research TMU

